F_VN_TrainSampleVector

F_VN_TrainSampleVector 1:

Train a regressor with a single sample and vectorial output.

Syntax

Definition:

FUNCTION F_VN_TrainSampleVector : HRESULT
VAR_INPUT
    ipRegressor : ITcVnMlModel;
    ipSample    : ITcUnknown;
    ipOutput    : ITcVnContainer;
    hrPrev      : HRESULT;
END_VAR

F_VN_TrainSampleVector 2: Inputs

Name

Type

Description

ipRegressor

ITcVnMlModel

Regressor to be used

ipSample

ITcUnknown

Container holding a single input sample (ContainerType_Vector_REAL or ContainerType_Vector_LREAL)

ipOutput

ITcVnContainer

Vectorial output to be learnt (ContainerType_Vector_REAL or ContainerType_Vector_LREAL)

hrPrev

HRESULT

HRESULT indicating the result of previous operations (If SUCCEEDED(hrPrev) equals false, no operation is executed.)

F_VN_TrainSampleVector 3: Return value

HRESULT

Further information

The function F_VN_TrainSampleVector trains a vector regressor model with a sample.

Parameter

Regressor model

The previously created regressor model must be transferred to ipRegressor.

Sample

The sample container is transferred as ipSample. The type of container must be ContainerType_Vector_REAL or ContainerType_Vector_LREAL.

Training vector

The result vector of the sample is transferred to ipOutput.

Application

For example, a vector regressor model can be trained with a single sample as follows:

hr := F_VN_TrainSampleVector(
    := ipRegressorModel,
    ipSample        := ipSample,
    ipOutput        := ipVector,
    hrPrev          := hr);

Related functions

Required License

TC3 Machine Learning Realtime Inference

System Requirements

Development environment

Target platform

PLC libraries to include

TwinCAT V3.1.4024.59 or later

PC or CX (x64) with min. PL50, e.g. Intel 4-core Atom CPU

Tc3_Vision