F_VN_CreateStaModel
Create a Simplified TopoART neural network of the specified type. The initial reference count is set to one if a new model is created and kept, otherwise. Models of this type support on-line training (sample by sample), retraining, as well as scalar and vectorial predictions. It requires all input except class labels (i.e., samples and training outputs/predictions) to lie in the interval [0.0, 1.0]. The predictions of regressors need to be rescaled from the interval [0.0, 1.0] to their respective value range before usage. Depending on the parameter settings and the number of available training samples, repeated training with the same data may improve the results. Like other neural networks based on the Adaptive Resonance Theory (ART), Simplified TopoART neural networks are not prone to catastrophic inference and patricularly well-suited to incremental learning tasks.
Syntax
Definition:
FUNCTION F_VN_CreateStaModel : HRESULT
VAR_INPUT
ipMlModel : Reference To ITcVnMlModel;
eStaType : ETcVnSta;
fRho : LREAL;
hrPrev : HRESULT;
END_VAR
Inputs
Name |
Type |
Description |
---|---|---|
ipMlModel |
Reference To ITcVnMlModel |
Returns the created model (Non-zero interface pointers are reused.) |
eStaType |
Simpified TopoART model type | |
fRho |
LREAL |
Vigilance parameter (controls the number of neurons that are inserted and the maximum size of the formed categories; valid range: [0.0, 1.0]; suggested range: [0.8, 1.0)) |
hrPrev |
HRESULT indicating the result of previous operations (If SUCCEEDED(hrPrev) equals false, no operation is executed.) |
Weiterführende Informationen
Die Funktion F_VN_CreateStaModel
erstellt ein Simplified TopoART (STA) Modell.
Simplified TopoART-Modelle
Das Simplified TopoART Netzwerk lernt Teilbereiche des Merkmalsraums. Je nach Anwendung werden diese zu Clustern zusammengefasst, Klassen zugeordnet oder für die Prädiktion verwendet. Aufgrund der inkrementellen Architektur ist ein Nachtraining möglich, wobei die bereits gelernten Informationen bestmöglich erhalten werden. Als Eingaben (mit Ausnahme der Klassenbezeichnungen) werden nur Werte im Intervall von 0.0 und 1.0 akzeptiert. Daher empfiehlt es sich eine Merkmalsnormierung zu verwenden.
Modell
In dem Interface Pointer ipMlModel
wird das erstellte Modell zurückgegeben.
Modell-Typ
eStaType
legt fest, ob das STA-Modell zur Klassifizierung (TCVN_STA_CLASSIFIER
), zur Regression (TCVN_STA_REGRESSOR
), zum Clustering (TCVN_STA_CLUSTERER
) oder zur Anomalie-Detektion (TCVN_STA_NOVELTY_DETECTOR
) genutzt wird.
Vigilanz-Parameter
Zur Anpassung des Modells an die jeweilige Aufgabenstellung ist dieser Parameter entscheidend, da er die maximale Größe der zu lernenden Teilbereiche steuert.
Expert-Parameter
Die Expert-Varianten F_VN_CreateStaModelExp und F_VN_CreateStaModelExp2 enthalten zusätzliche Parameter.
Anwendung
Ein STA-Modell zur Klassifikation kann z.B. so erstellt werden:
hr := F_VN_CreateStaModel(
ipMlModel := ipMlModel,
eStaType := TCVN_STA_CLASSIFIER,
fRho := 0.9,
hrPrev := hr);
Required License
TC3 Vision Machine Learning
System Requirements
Development environment | Target platform | PLC libraries to include |
---|---|---|
TwinCAT V3.1.4024.59 or later | PC or CX (x64) with PL50, e.g. Intel 4-core Atom CPU | Tc3_Vision |