CreateSvmModel
Create an SVM model of the specified type. The initial reference count is set to one if a new model is created and kept, otherwise. Models of this type neither support on-line training (sample by sample) nor retraining. Predictions can only be scalar. (additional expert function for C support vector classifiers)
Syntax
Definition:
HRESULT CreateSvmModel(
HRESULT hrPrev,
ITcVnMlModel*& ipMlModel,
ETcVnSvm eSvmType,
double fC,
double fNu,
double fP,
ETcVnSvmKernelType eKernelType,
double fGamma,
double fCoef0,
double fDegree,
ULONG nMaxIterations = 0,
double fEpsilon = 0.0,
ITcVnContainer* ipClassWeights = nullptr
)
Parameters
Name |
Type |
Default |
Description |
---|---|---|---|
hrPrev |
|
HRESULT indicating the result of previous operations (If SUCCEEDED(hrPrev) equals false, no operation is executed.) | |
ipMlModel |
|
Returns the created model (Non-zero interface pointers are reused.) | |
eSvmType |
|
SVM model type | |
fC |
double |
|
Parameter C (required for TCVN_SVM_C_CLASSIFIER, TCVN_SVM_EPS_REGRESSOR, and TCVN_SVM_NU_REGRESSOR; ignored otherwise) |
fNu |
double |
|
Parameter nu (required for TCVN_SVM_NU_CLASSIFIER, TCVN_SVM_NOVELTY_DETECTOR, and TCVN_SVM_NU_REGRESSOR; ignored otherwise) |
fP |
double |
|
Parameter p (required for TCVN_SVM_EPS_REGRESSOR; ignored otherwise) |
eKernelType |
|
Kernel type | |
fGamma |
double |
|
Parameter gamma (used by polynomial, RBF, sigmoid, and chi-squared kernels; ignored otherwise) |
fCoef0 |
double |
|
Parameter coef0 (used by polynomial and sigmoid kernels; ignored otherwise) |
fDegree |
double |
|
Degree (used by polynomial kernels; ignored otherwise) |
nMaxIterations |
ULONG |
0 |
Maximum number of iterations (disabled if it equals 0 and fEpsilon is different from 0.0; triggers the usage of the default value of 100000 if nMaxIterations and fEpsilon equal 0) |
fEpsilon |
double |
0.0 |
Maximum allowed difference of the error between two successive iterations (disabled if it equals 0.0 and nMaxIterations is different from 0; triggers the usage of the default value of 0.00001 if nMaxIterations and fEpsilon equal 0) |
ipClassWeights |
nullptr |
Class weights (ContainerType_Vector_REAL or ContainerType_Vector_LREAL; only valid if eSvmType equals TCVN_SVM_C_CLASSIFIER; optional, set to 0 if not required or not allowed; default: 0) |
Required License
TC3 Vision Machine Learning
System Requirements
Development environment | Target platform | PLC libraries to include |
---|---|---|
TwinCAT V3.1.4024.54 or later | PC or CX (x64) with PL50, e.g. Intel 4-core Atom CPU | Tc3_Vision |