CreateBoostClassifier

Create a Boost classifier. The initial reference count is set to one if a new model is created and kept, otherwise. The Boost classifier is only applicable to binary classification problems. It learns to distinguish between samples labelled with two user-defined class labels by incrementally adding weak classifiers to improve the classification results. Models of this type neither support on-line training (sample by sample) nor retraining.

Syntax

Definition:

HRESULT CreateBoostClassifier(
    HRESULT                  hrPrev,
    ITcVnMlModel*&           ipMlModel,
    ETcVnBoostClassifierType eType = BCT_REAL,
    ULONG                    nMaxDepth = 1,
    ULONG                    nMinSamples = 10,
    ULONG                    nWeakClassifiers = 100,
    double                   fWeightTrimRate = 0.95,
    ITcVnContainer*          ipClassPriors = nullptr
)

Parameters

Name

Type

Default

Description

hrPrev

HRESULT

HRESULT indicating the result of previous operations (If SUCCEEDED(hrPrev) equals false, no operation is executed.)

ipMlModel

ITcVnMlModel*&

Returns the created model (Non-zero interface pointers are reused.)

eType

ETcVnBoostClassifierType

BCT_REAL

Learning algorithm type (default: TCVN_BCT_REAL)

nMaxDepth

ULONG

1

Maximum tree depth (default: 1)

nMinSamples

ULONG

10

Minimum number of samples within a node required for splitting (default: 10)

nWeakClassifiers

ULONG

100

Number of weak classifiers (default: 100)

fWeightTrimRate

double

0.95

Weight threshold used during training (off: 0; default: 0.95).

ipClassPriors

ITcVnContainer*

nullptr

Class priors (ContainerType_Vector_REAL or ContainerType_Vector_LREAL; only for classifiers; optional, set to 0 if not required or not allowed; default: 0)

CreateBoostClassifier 1: Return value

HRESULT

Required License

TC3 Machine Learning Realtime Inference

System Requirements