CreateSvmSgdClassifier
Create a linear SVM classifier using stochastic gradient descent for training. The initial reference count is set to one if a new model is created and kept, otherwise. This SVM classifier is only applicable to binary classification problems. It learns a separating hyperplane between a class with label -1 and a class with label 1. These class labels are predefined. For training, any positive class labels are mapped to 1 and any negative class labels are mapped to -1. Models of this type neither support on-line training (sample by sample) nor retraining.
Syntax
Definition:
HRESULT CreateSvmSgdClassifier(
HRESULT hrPrev,
ITcVnMlModel*& ipMlModel,
ETcVnSvmSgdClassifierType eType = SSCT_ASGD,
ETcVnSvmSgdClassifierMarginType eMarginType = SSCMT_SOFT_MARGIN,
float fMarginRegularization = 0.00001f,
float fInitialStepSize = 0.05f,
float fStepDecreasingPower = 0.75f,
ULONG nMaxIterations = 0,
double fEpsilon = 0.0
)
Parameters
Name |
Type |
Default |
Description |
---|---|---|---|
hrPrev |
|
HRESULT indicating the result of previous operations (If SUCCEEDED(hrPrev) equals false, no operation is executed.) | |
ipMlModel |
|
Returns the created model (Non-zero interface pointers are reused.) | |
eType |
SSCT_ASGD |
Learning algorithm type (default: TCVN_SSCT_ASGD) | |
eMarginType |
SSCMT_SOFT_MARGIN |
Margin type (default: TCVN_SSCMT_SOFT_MARGIN) | |
fMarginRegularization |
float |
0.00001f |
Margin regularization parameter (default: 0.00001) |
fInitialStepSize |
float |
0.05f |
Initial step size (default: 0.05) |
fStepDecreasingPower |
float |
0.75f |
Power parameter (default: 0.75) |
nMaxIterations |
ULONG |
0 |
Maximum number of iterations (disabled if it equals 0 and fEpsilon is different from 0.0; triggers the usage of the default value of 100000 if nMaxIterations and fEpsilon equal 0) |
fEpsilon |
double |
0.0 |
Maximum allowed difference of the error between two successive iterations (disabled if it equals 0.0 and nMaxIterations is different from 0; triggers the usage of the default value of 0.00001 if nMaxIterations and fEpsilon equal 0) |
Required License
TC3 Vision Machine Learning
System Requirements
Development environment | Target platform | PLC libraries to include |
---|---|---|
TwinCAT V3.1.4024.59 or later | PC or CX (x64) with PL50, e.g. Intel 4-core Atom CPU | Tc3_Vision |